Deep Learning 2019/2020

Detailed information

Keywords: introduction tasks dataset batch activations pooling auxiliary task local image normalization var source features pattern activation perceptron analytic loss breininger

Most recent entry on 2019-12-03 

Faculty

Lehrstuhl für Informatik 5 (Mustererkennung)

Recording type

Vorlesungsreihe

Via

Free

Language

English

Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises:
  • (multilayer) perceptron, backpropagation, fully connected neural networks

  • loss functions and optimization strategies

  • convolutional neural networks (CNNs)

  • activation functions

  • regularization strategies

  • common practices for training and evaluating neural networks

  • visualization of networks and results

  • common architectures, such as LeNet, Alexnet, VGG, GoogleNet

  • recurrent neural networks (RNN, TBPTT, LSTM, GRU)

  • deep reinforcement learning

  • unsupervised learning (autoencoder, RBM, DBM, VAE)

  • generative adversarial networks (GANs)

  • weakly supervised learning

  • applications of deep learning (segmentation, object detection, speech recognition, ...)

The accompanying exercises will provide a deeper understanding of the workings and architecture of neural networks.

Associated Clips

Episode
Title
Lecturer
Updated
Via
Duration
Media
1
Deep Learning
Dipl.-Inf. Vincent Christlein
2019-10-15
Free
01:08:08
2
Deep Learning
Prof. Dr. Andreas Maier
2019-10-29
Free
01:24:10
3
Deep Learning
M. Sc. Katharina Breininger
2019-11-05
Free
01:23:24
4
Deep Learning
M. Sc. Katharina Breininger
2019-11-12
Free
01:18:45
5
Deep Learning
Prof. Dr. Andreas Maier
2019-11-19
Free
01:05:49
6
Deep Learning
Prof. Dr. Andreas Maier
2019-11-26
Free
01:19:38
7
Deep Learning
Prof. Dr. Andreas Maier
2019-12-03
Free
01:03:29

More courses from Prof. Dr. Andreas Maier

Hornegger, Joachim
Prof. Dr. Andreas Maier
2012-02-07
Free
Hornegger, Joachim
Prof. Dr. Andreas Maier
2013-02-05
Free
Maier, Andreas
Prof. Dr. Andreas Maier
2016-12-07
IdM-login
Maier, Andreas
Prof. Dr. Andreas Maier
2016-11-08
Studon

More courses in this category "Computer Science"

DigiDok - Görz und Schneeberger
Prof. Dr. Günther Görz
2010-07-20
Free
Schloss1
Dipl.-Inf. Andreas Schäfer
2015-01-27
Free
Hornegger, Joachim
Prof. Dr. Joachim Hornegger
2011-07-26
Free
Schröder, Lutz
Prof. Dr. Lutz Schröder
2017-02-06
Free
Hornegger, Joachim
Prof. Dr. Joachim Hornegger
2012-02-07
Free