Experimental physics of modern materials (B): Photophysics (EPM-MAT, PW) 2020/2021 /CourseID:1721

Detailed information

Most recent entry on 2020-10-24 

Organisational Unit

Department Physik

Recording type

Vorlesungsreihe

Language

English

See UnivIS for further information:

http://univis.uni-erlangen.de/form?__s=2&dsc=anew/lecture_view&lvs=nat/dphy/IAP/LF/experi&anonymous=1&founds=nat/dphy/IAP/LF/bungen,/experi&nosearch=1&ref=main&sem=2020w&__e=555

Lecture materials and slides available via the corresponding Studon course:

https://www.studon.fau.de/studon/goto.php?target=crs_3374329

Short summary

The lecture series will be given as an asynchronous online class, i.e. in the form of videos with recorded learning units that will be available via the FAU vide portal. Complementary slides and written summaries of the lectures will be available online via the studon portal. The exercise class will be held live online. This course will discuss the basic photophysical processes involved in and following the optical excitation of materials. Experimental techniques will be introduced to characterize these processes, which involve the optical absorption of light, the subsequent energetic carrier relaxation, phototransport, and carrier recombination. The functionality and performance of a large number of optoelectronic components, such as solar cell absorbers, photodetectors, or emitter materials for light-emitting diodes, rely on different combinations of these steps. While they can, in principle, be observed in a large variety of condensed-matter systems, their dynamics differ strongly between bulk direct and indirect band semiconductors, (quantum) confined systems, or materials with strong carrier localization, which can arise from exciton or polaron formation. The spectroscopic and time-resolved techniques, which are commonly applied to characterize the responses of these different systems to photoexcitation, will be introduced. These include both optical and electron spectroscopy techniques.

 

Contents:
1. Classical description of optical properties of solids
2. Semiclassical (semiquantummechanical) description
3. Optical transitions in crystalline solids
4. Excitons and multiparticle effects
5. Recombination and Luminescence
6. Semiconductor devices
7. Electron-phonon coupling

Course chapters

Episode
Title
Lecturer
Updated
Via
Duration
Media
1
Lecture 01, video 00: Welcome
Dr. Daniel Niesner
2020-10-22
IdM-login
00:02:12
2
Lecture 01, video 01: Outline
Dr. Daniel Niesner
2020-10-22
IdM-login
00:12:17
3
Lecture 01, video 02: Motivation
Dr. Daniel Niesner
2020-10-22
IdM-login
00:25:06
4
Lecture 01, video 03: Spectrum of electromagnetic radiation
Dr. Daniel Niesner
2020-10-22
IdM-login
00:07:20
5
Lecture 01, video 04: Reflection and transmission
Dr. Daniel Niesner
2020-10-22
IdM-login
00:09:57
6
Lecture 01, video 05: UV-vis absorption spectroscopy
Dr. Daniel Niesner
2020-10-22
IdM-login
00:09:25
7
Lecture 01, video 06: Complex dielectric constants
Dr. Daniel Niesner
2020-10-22
IdM-login
00:11:00
Episode
Title
Lecturer
Updated
Via
Duration
Media
8
Lecture 02, video 01: Classical harmonic oscillator model
Dr. Daniel Niesner
2020-10-22
IdM-login
00:17:18
9
Lecture 02, video 02: Discussion of harmonic oscillator model
Dr. Daniel Niesner
2020-10-22
IdM-login
00:18:58
10
Lecture 02, video 03: Kramers Kronig relations
Dr. Daniel Niesner
2020-10-22
IdM-login
00:03:27
11
Lecture 02, video 04: Ellipsometry
Dr. Daniel Niesner
2020-10-22
IdM-login
00:24:12
12
Lecture 02, video 05: Plasma response
Dr. Daniel Niesner
2020-10-22
IdM-login
00:14:09
13
Lecture 02, video 06: Conductivity and optical properties
Dr. Daniel Niesner
2020-10-22
IdM-login
00:18:14
Episode
Title
Lecturer
Updated
Via
Duration
Media
14
Lecture 03, video 01: Quantum mechanicals - basics
Dr. Daniel Niesner
2020-10-22
IdM-login
00:13:24
15
Lecture 03, video 02: The hydrogen atom
Dr. Daniel Niesner
2020-10-22
IdM-login
00:18:39
16
Lecture 03, video 03: Optical transitions
Dr. Daniel Niesner
2020-10-22
IdM-login
00:28:10
17
Lecture 03, video 04: Angular momentum
Dr. Daniel Niesner
2020-10-22
IdM-login
00:15:45
18
Lecture 03, video 05: Refinement
Dr. Daniel Niesner
2020-10-22
IdM-login
00:28:22
Episode
Title
Lecturer
Updated
Via
Duration
Media
19
Lecture 04, video 01: The tight binding (LCAO) model
Dr. Daniel Niesner
2020-10-22
IdM-login
00:21:05
20
Lecture 04, video 02: The chemical bond
Dr. Daniel Niesner
2020-10-22
IdM-login
00:05:39
21
Lecture 04, video 03: Selection rules related to a mirror plane
Dr. Daniel Niesner
2020-10-22
IdM-login
00:06:57
22
Lecture 04, video 04: Photoinduced nuclear dynamics in H2
Dr. Daniel Niesner
2020-10-22
IdM-login
00:11:07
23
Lecture 04, video 05: Stokes shift
Dr. Daniel Niesner
2020-10-22
IdM-login
00:15:02
24
Lecture 04, video 06: Hybridization
Dr. Daniel Niesner
2020-10-22
IdM-login
00:16:09
25
Lecture 04, video 07: Schrödinger equation for benzene
Dr. Daniel Niesner
2020-10-22
IdM-login
00:21:09
26
Lecture 04, video 08: Optical selection rules for benzene
Dr. Daniel Niesner
2020-10-22
IdM-login
00:12:50
Episode
Title
Lecturer
Updated
Via
Duration
Media
27
Lecture 05, video 01: Crystal symmetry
Dr. Daniel Niesner
2020-10-22
IdM-login
00:20:01
28
Lecture 05, video 02: Electronic structure of crystalline solids
Dr. Daniel Niesner
2020-10-22
IdM-login
00:20:01
29
Lecture 05, video 03: Peierls instability and soliton conduction
Dr. Daniel Niesner
2020-10-22
IdM-login
00:11:41
30
Lecture 05, video 04: Electronic structure of solids in > 1 dimensions
Dr. Daniel Niesner
2020-10-22
IdM-login
00:09:38
31
Lecture 05, video 05: Optical selection rules related to crystallines symmetry
Dr. Daniel Niesner
2020-10-22
IdM-login
00:09:11
32
Lecture 05, video 06: Photoemission
Dr. Daniel Niesner
2020-10-22
IdM-login
00:14:58
Episode
Title
Lecturer
Updated
Via
Duration
Media
33
Lecture 06, video 01: The reciprocal lattice
Dr. Daniel Niesner
2020-10-22
IdM-login
00:19:04
34
Lecture 06, video 02: fcc and bcc lattices
Dr. Daniel Niesner
2020-10-22
IdM-login
00:10:58
35
Lecture 06, video 03: Quasi-free electrons
Dr. Daniel Niesner
2020-10-22
IdM-login
00:18:22
36
Lecture 06, video 04: Tight-binding description for crystalline solids
Dr. Daniel Niesner
2020-10-22
IdM-login
00:14:53
37
Lecture 06, video 05: Discussion of the tight-binding description
Dr. Daniel Niesner
2020-10-22
IdM-login
00:14:52
Episode
Title
Lecturer
Updated
Via
Duration
Media
38
Lecture 07, video 01: Band-to-band transitions and optical constants
Dr. Daniel Niesner
2020-10-22
IdM-login
00:12:20
39
Lecture 07, video 02: (Joint) density of states
Dr. Daniel Niesner
2020-10-22
IdM-login
00:08:18
40
Lecture 07, video 03: Transition metals
Dr. Daniel Niesner
2020-10-22
IdM-login
00:10:39
41
Lecture 07, video 04: Crystalline semiconductors and semiconductor crystals
Dr. Daniel Niesner
2020-10-22
IdM-login
00:13:23
42
Lecture 07, video 05: Optical properties of semiconductors with diamond and zincblende structure
Dr. Daniel Niesner
2020-10-22
IdM-login
00:09:02
43
Lecture 07, video 06: Direct and indirect semiconductors
Dr. Daniel Niesner
2020-10-22
IdM-login
00:10:04
44
Lecture 07, video 07: Femtosecond spectroscopy
Dr. Daniel Niesner
2020-10-22
IdM-login
00:08:31
45
Lecture 07, video 08: Recombination dynamics
Dr. Daniel Niesner
2020-10-22
IdM-login
00:14:54
Episode
Title
Lecturer
Updated
Via
Duration
Media
46
Lecture 08, video 01: Absorption onset of direct semiconductors
Dr. Daniel Niesner
2020-10-24
IdM-login
00:12:21
47
Lecture 08, video 02: Absorption onset of indirect semiconductors
Dr. Daniel Niesner
2020-10-24
IdM-login
00:19:56
48
Lecture 08, video 03: Comparison of absorption spectra of direct and indirect semiconductors
Dr. Daniel Niesner
2020-10-24
IdM-login
00:06:21
49
Lecture 08, video 04: Forbidden direct transitions
Dr. Daniel Niesner
2020-10-24
IdM-login
00:05:46
50
Lecture 08, video 05: Critical points in 1, 2, and 3D
Dr. Daniel Niesner
2020-10-24
IdM-login
00:14:05
51
Lecture 08, video 06: Excitons - introduction
Dr. Daniel Niesner
2020-10-24
IdM-login
00:08:51
52
Lecture 08, video 07: Wannier functions
Dr. Daniel Niesner
2020-10-24
IdM-login
00:10:24
53
Lecture 08, video 08: Bound excitons
Dr. Daniel Niesner
2020-10-24
IdM-login
00:13:13
Episode
Title
Lecturer
Updated
Via
Duration
Media
54
Lecture 09, video 01: Free excitons
Dr. Daniel Niesner
2020-10-24
IdM-login
00:17:00
55
Lecture 09, video 02: Exciton polaritons
Dr. Daniel Niesner
2020-10-24
IdM-login
00:07:22
56
Lecture 09, video 03: Cavity polaritons
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:59
57
Lecture 09, video 04: Absorption spectrum of excitons
Dr. Daniel Niesner
2020-10-24
IdM-login
00:17:28
58
Lecture 09, video 05: Effect of excitons at critical points other than M0
Dr. Daniel Niesner
2020-10-24
IdM-login
00:12:54
59
Lecture 09, video 06: Sum rules
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:29
60
Lecture 09, video 07: Applicaton examples for sum rules: aluminium
Dr. Daniel Niesner
2020-10-24
IdM-login
00:06:25
61
Lecture 09, video 08: Applicaton examples for sum rules: Burstein Moss shift
Dr. Daniel Niesner
2020-10-24
IdM-login
00:10:35
62
Lecture 09, video 09: Applicaton examples for sum rules: Superconducting phase transition
Dr. Daniel Niesner
2020-10-24
IdM-login
00:05:12
63
Lecture 09, video 10: Application examples for sum rules: Electroreflectance
Dr. Daniel Niesner
2020-10-24
IdM-login
00:11:02
Episode
Title
Lecturer
Updated
Via
Duration
Media
64
Lecture 10, video 01: Kasha's rule
Dr. Daniel Niesner
2020-10-24
IdM-login
00:03:06
65
Lecture 10, video 02: Einstein coefficients
Dr. Daniel Niesner
2020-10-24
IdM-login
00:12:18
66
Lecture 10, video 03: van Roosbroeck Shokley relation
Dr. Daniel Niesner
2020-10-24
IdM-login
00:24:18
67
Lecture 10, video 04: van Roosbroeck Shokley model - comparison to experimental data
Dr. Daniel Niesner
2020-10-24
IdM-login
00:10:47
68
Lecture 10, video 05: Recombination mechanisms
Dr. Daniel Niesner
2020-10-24
IdM-login
00:14:12
69
Lecture 10, video 06: Photoliuminescence quantum yield in first-order recombination
Dr. Daniel Niesner
2020-10-24
IdM-login
00:08:50
70
Lecture 10, video 07: First order and second order exciton recombination
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:17
71
Lecture 10, video 08: First order and second order recombination of free carriers
Dr. Daniel Niesner
2020-10-24
IdM-login
00:08:51
72
Lecture 10, video 09: Defect-induced (Shockley Read Hall) recombination
Dr. Daniel Niesner
2020-10-24
IdM-login
00:08:24
73
Lecture 10, video 10: Auger (third order) recombination
Dr. Daniel Niesner
2020-10-24
IdM-login
00:02:30
Episode
Title
Lecturer
Updated
Via
Duration
Media
74
Lecture 11, video 01: Light-emitting diode (LED) - basic concept
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:55
75
Lecture 11, video 02: Doping of semiconductors
Dr. Daniel Niesner
2020-10-24
IdM-login
00:12:44
76
Lecture 11, video 03: The pn junction
Dr. Daniel Niesner
2020-10-24
IdM-login
00:16:55
77
Lecture 11, video 04: Device structure of a LED
Dr. Daniel Niesner
2020-10-24
IdM-login
00:15:02
78
Lecture 11, video 05: Light outcoupling
Dr. Daniel Niesner
2020-10-24
IdM-login
00:05:02
79
Lecture 11, video 06: Laser diodes
Dr. Daniel Niesner
2020-10-24
IdM-login
00:10:17
Episode
Title
Lecturer
Updated
Via
Duration
Media
80
Lecture 12, video 01: The phonon dispersion
Dr. Daniel Niesner
2020-10-24
IdM-login
00:15:01
81
Lecture 12, video 02: Experimental determination of phonon frequencies
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:28
82
Lecture 12, video 03: Phonon polaritons
Dr. Daniel Niesner
2020-10-24
IdM-login
00:07:24
83
Lecture 12, video 04: Electron-phonon scattering
Dr. Daniel Niesner
2020-10-24
IdM-login
00:08:13
84
Lecture 12, video 05: Efficiency of electron-phonon scattering as a function of temperature and electron excess energy
Dr. Daniel Niesner
2020-10-24
IdM-login
00:10:54
85
Lecture 12, video 06: Polarons
Dr. Daniel Niesner
2020-10-24
IdM-login
00:13:29
86
Lecture 12, video 07: Time-domain measurements of nuclear dynamics
Dr. Daniel Niesner
2020-10-24
IdM-login
00:11:26
87
Lecture 12, video 08: Optical alignment of spins
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:10
88
Lecture 12, video 09: Spin scattering
Dr. Daniel Niesner
2020-10-24
IdM-login
00:06:26
89
Lecture 12, video 10: Optical experiments that measure of make use of spin alignment
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:43
Episode
Title
Lecturer
Updated
Via
Duration
Media
90
Lecture 13, video 01: Photodiodes - concept
Dr. Daniel Niesner
2020-10-24
IdM-login
00:06:37
91
Lecture 13, video 02: Photodiodes - efficiency
Dr. Daniel Niesner
2020-10-24
IdM-login
00:09:19
92
Lecture 13, video 03: Photodiodes - device layout and design
Dr. Daniel Niesner
2020-10-24
IdM-login
00:10:35
93
Lecture 13, video 04: Solar cell - basic concept
Dr. Daniel Niesner
2020-10-24
IdM-login
00:06:31
94
Lecture 13, video 05: Solar cell - characteristics
Dr. Daniel Niesner
2020-10-24
IdM-login
00:06:10
95
Lecture 13, video 06: Solar cell and solar spectrum
Dr. Daniel Niesner
2020-10-24
IdM-login
00:17:12
96
Lecture 13, video 07: Thin-film solar cells
Dr. Daniel Niesner
2020-10-24
IdM-login
00:06:25
97
Lecture 13, video 08: Concepts for efficiencies exceeding the Shockley-Queisser limit
Dr. Daniel Niesner
2020-10-24
IdM-login
00:21:52

More courses in this category "Naturwissenschaftliche Fakultät"

Gugat, Martin
Prof. Dr. Martin Gugat
2015-01-29
Free
Schuller, Frederic P.
Dr. Frederic P. Schuller
2014-07-10
Free
Neeb, Karl-Hermann
Prof. Dr. Karl-Hermann Neeb
2020-11-18
Studon